Deep Dictionary Learning: A PARametric NETwork Approach
نویسندگان
چکیده
Deep dictionary learning seeks multiple dictionaries at different image scales to capture complementary coherent characteristics. We propose a method for learning a hierarchy of synthesis dictionaries with an image classification goal. The dictionaries and classification parameters are trained by a classification objective, and the sparse features are extracted by reducing a reconstruction loss in each layer. The reconstruction objectives in some sense regularize the classification problem and inject source signal information in the extracted features. The performance of the proposed hierarchical method increases by adding more layers, which consequently makes this model easier to tune and adapt. The proposed algorithm furthermore, shows remarkably lower fooling rate in presence of adversarial perturbation. The validation of the proposed approach is based on its classification performance using four benchmark datasets and is compared to a CNN of similar size.
منابع مشابه
How to Train Your Deep Neural Network with Dictionary Learning
Currently there are two predominant ways to train deep neural networks. The first one uses restricted Boltzmann machine (RBM) and the second one autoencoders. RBMs are stacked in layers to form deep belief network (DBN); the final representation layer is attached to the target to complete the deep neural network. Autoencoders are nested one inside the other to form stacked autoencoders; once th...
متن کاملMultiscale Residual Mixture of PCA: Dynamic Dictionaries for Optimal Basis Learning
In this paper we are interested in the problem of learning an over-complete basis and a methodology such that the reconstruction or inverse problem does not need optimization. We analyze the optimality of the presented approaches, their link to popular already known techniques s.a. Artificial Neural Networks,k-means or Oja’s learning rule. Finally, we will see that one approach to reach the opt...
متن کاملGreedy Deep Dictionary Learning
—In this work we propose a new deep learning tool – deep dictionary learning. Multi-level dictionaries are learnt in a greedy fashion – one layer at a time. This requires solving a simple (shallow) dictionary learning problem; the solution to this is well known. We apply the proposed technique on some benchmark deep learning datasets. We compare our results with other deep learning tools like s...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملDeep Dictionary Learning vs Deep Belief Network vs Stacked Autoencoder: An Empirical Analysis
A recent work introduced the concept of deep dictionary learning. The first level is a dictionary learning stage where the inputs are the training data and the outputs are the dictionary and learned coefficients. In subsequent levels of deep dictionary learning, the learned coefficients from the previous level acts as inputs. This is an unsupervised representation learning technique. In this wo...
متن کامل